Rank-Nullity Theorem

For a linear map, dimension(domain) = dimension(kernel) + dimension(image)
Rank-Nullity Theorem

Rank-Nullity Theorem: Let T:VWT:V\to W be a between finite-dimensional over the same field. Define

  • ker(T)={vV:T(v)=0}\ker(T)=\{v\in V:T(v)=0\} (kernel / null space),
  • im(T)={T(v):vV}\operatorname{im}(T)=\{T(v):v\in V\} (image),
  • nullity(T)=dim(ker(T))\operatorname{nullity}(T)=\dim(\ker(T)),
  • rank(T)=dim(im(T))\operatorname{rank}(T)=\dim(\operatorname{im}(T)), where dim(U)\dim(U) denotes the number of vectors in any basis of UU.

Then

dim(V)=nullity(T)+rank(T). \dim(V)=\operatorname{nullity}(T)+\operatorname{rank}(T).

This theorem is the basic dimension-counting tool for linear maps. For example, TT is if and only if ker(T)={0}\ker(T)=\{0\}, and it is if and only if rank(T)=dim(W)\operatorname{rank}(T)=\dim(W) (in finite dimensions). Standard proofs ultimately rely on the existence of bases, guaranteed in general by .

Proof sketch: Choose a basis (k1,,km)(k_1,\dots,k_m) of ker(T)\ker(T) and extend it to a basis (k1,,km,vm+1,,vn)(k_1,\dots,k_m,v_{m+1},\dots,v_n) of VV. Then (T(vm+1),,T(vn))(T(v_{m+1}),\dots,T(v_n)) is a basis of im(T)\operatorname{im}(T): it spans by construction, and linear independence follows because any dependence lifts to an element of ker(T)\ker(T). Counting basis elements gives n=m+(nm)n=m+(n-m), i.e. dim(V)=dim(ker(T))+dim(im(T))\dim(V)=\dim(\ker(T))+\dim(\operatorname{im}(T)).