Linear Map

A function between vector spaces that preserves addition and scalar multiplication
Linear Map

Let VV and WW be over the same FF. A linear map (or linear transformation) is a T:VWT:V\to W such that for all u,vVu,v\in V and all aFa\in F,

T(u+v)=T(u)+T(v),T(av)=aT(v). T(u+v)=T(u)+T(v),\qquad T(a\cdot v)=a\cdot T(v).

Equivalently, TT preserves all finite linear combinations: for any v1,,vnVv_1,\dots,v_n\in V and a1,,anFa_1,\dots,a_n\in F,

T ⁣(i=1naivi)=i=1naiT(vi). T\!\left(\sum_{i=1}^n a_i v_i\right)=\sum_{i=1}^n a_i\,T(v_i).

Given such a TT, its kernel (or null space) is ker(T)={vV:T(v)=0}\ker(T)=\{v\in V:T(v)=0\} and its image is im(T)={T(v):vV}\operatorname{im}(T)=\{T(v):v\in V\}. A subset UVU\subseteq V is a (linear) subspace if u,uUu,u'\in U and aFa\in F implies u+uUu+u'\in U and auUa\cdot u\in U; with this definition, both ker(T)\ker(T) and im(T)\operatorname{im}(T) are subspaces.

In finite-dimensional situations, relates the “size” of ker(T)\ker(T) and im(T)\operatorname{im}(T).

Examples:

  • The coordinate projection π:R3R2\pi:\mathbb{R}^3\to\mathbb{R}^2, π(x,y,z)=(x,y)\pi(x,y,z)=(x,y) (between instances of ), is linear.
  • For a field FF, the derivative map D:F[t]F[t]D:F[t]\to F[t], D(p)=pD(p)=p', is linear.
  • Fix t0Ft_0\in F. The evaluation map evt0:F[t]F\operatorname{ev}_{t_0}:F[t]\to F, evt0(p)=p(t0)\operatorname{ev}_{t_0}(p)=p(t_0), is linear.