Inner Product

A positive-definite sesquilinear form defining lengths and angles in a vector space
Inner Product

Let VV be a over R\mathbb{R} or over the C\mathbb{C}. An inner product on VV is a function ,:V×VR\langle\cdot,\cdot\rangle:V\times V\to \mathbb{R} (real case) or ,:V×VC\langle\cdot,\cdot\rangle:V\times V\to \mathbb{C} (complex case) such that for all u,v,wVu,v,w\in V and all scalars a,ba,b:

  1. Linearity in the first argument: au+bv,w=au,w+bv,w\langle au+bv,w\rangle=a\langle u,w\rangle+b\langle v,w\rangle.
  2. Conjugate symmetry: v,u=u,v\langle v,u\rangle=\overline{\langle u,v\rangle}, where the bar denotes (in the real case this reduces to symmetry).
  3. Positive-definiteness: v,v0\langle v,v\rangle\ge 0 and v,v=0\langle v,v\rangle=0 if and only if v=0v=0.

An inner product induces a norm by v=v,v\|v\|=\sqrt{\langle v,v\rangle} (compare the as the standard example), and it defines via the condition u,v=0\langle u,v\rangle=0.

Examples:

  • On Rk\mathbb{R}^k, the standard inner product is x,y=i=1kxiyi\langle x,y\rangle=\sum_{i=1}^k x_i y_i.
  • On Ck\mathbb{C}^k, the standard (Hermitian) inner product is x,y=i=1kxiyi\langle x,y\rangle=\sum_{i=1}^k x_i\,\overline{y_i}.
  • If AA is a symmetric positive definite k×kk\times k real matrix, then x,y=xAy\langle x,y\rangle=x^\top A y defines an inner product on Rk\mathbb{R}^k.