Euclidean Norm

The length function ||x|| = sqrt(x1^2 + ... + xk^2) on R^k
Euclidean Norm

The Euclidean norm on Rk\mathbb{R}^k is the function :RkR0\|\cdot\|:\mathbb{R}^k\to\mathbb{R}_{\ge 0} defined by

x=x12++xk2for x=(x1,,xk). \|x\|=\sqrt{x_1^2+\cdots+x_k^2}\quad\text{for }x=(x_1,\dots,x_k).

It can also be expressed in terms of the standard by x=x,x\|x\|=\sqrt{\langle x,x\rangle}.

The Euclidean norm is compatible with the on R\mathbb{R} in the sense that for k=1k=1, x=x\|x\|=|x|.

Examples:

  • In R2\mathbb{R}^2, (3,4)=5\|(3,4)\|=5.
  • For the standard basis vector eiRke_i\in\mathbb{R}^k (with a 11 in the iith coordinate and 00 elsewhere), one has ei=1\|e_i\|=1.
  • The distance between x,yRkx,y\in\mathbb{R}^k is xy\|x-y\|.