Eigenspace

The subspace of vectors scaled by a linear operator with a fixed eigenvalue
Eigenspace

Let TT be a T:VVT:V\to V over a field FF, and let λF\lambda\in F. The λ\lambda-eigenspace of TT is the subset

Eλ(T)={vV:T(v)=λv}. E_\lambda(T)=\{v\in V : T(v)=\lambda v\}.

This is a subspace of VV: it contains 00, and it is closed under addition and scalar multiplication (because TT is linear).

The scalar λ\lambda is an of TT if and only if Eλ(T)E_\lambda(T) contains a nonzero vector. Equivalently,

Eλ(T)=ker(TλI), E_\lambda(T)=\ker(T-\lambda I),

where II is the on VV and ker(S)={v:S(v)=0}\ker(S)=\{v:S(v)=0\} denotes the kernel (null space) of a linear map SS.

Examples:

  • If T=λIT=\lambda I on VV, then Eλ(T)=VE_\lambda(T)=V and Eμ(T)={0}E_\mu(T)=\{0\} for μλ\mu\neq\lambda.
  • For A=(1101)A=\begin{pmatrix}1&1\\0&1\end{pmatrix} on F2F^2, E1(A)={(x,0):xF}E_1(A)=\{(x,0):x\in F\}.
  • For the rotation of R2\mathbb{R}^2 by 9090^\circ, Eλ(T)={0}E_\lambda(T)=\{0\} for every real λ\lambda (no real eigenvalues).