Determinant

A scalar invariant of a square matrix or linear operator measuring invertibility and volume scaling
Determinant

Let FF be a and let A=(aij)A=(a_{ij}) be an n×nn\times n matrix with entries in FF. The determinant of AA is the scalar

det(A)=σSnsgn(σ)i=1nai,σ(i), \det(A)=\sum_{\sigma\in S_n}\operatorname{sgn}(\sigma)\prod_{i=1}^n a_{i,\sigma(i)},

where SnS_n is the set of all permutations of {1,,n}\{1,\dots,n\} and sgn(σ){+1,1}\operatorname{sgn}(\sigma)\in\{+1,-1\} is the sign of σ\sigma (for instance sgn(σ)=(1)#{(i,j):i<j, σ(i)>σ(j)}\operatorname{sgn}(\sigma)=(-1)^{\#\{(i,j):i<j,\ \sigma(i)>\sigma(j)\}}).

If TT is a on a finite-dimensional vector space, det(T)\det(T) is defined as the determinant of any matrix representing TT in a basis; this does not depend on the choice of basis.

Determinants control invertibility: det(A)0\det(A)\neq 0 if and only if AA is invertible. They also define the via det(tIA)\det(tI-A).

Examples:

  • For A=(abcd)A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}, det(A)=adbc\det(A)=ad-bc.
  • If AA is upper triangular, then det(A)\det(A) is the product of its diagonal entries.
  • The rotation matrix (cosθsinθsinθcosθ)\begin{pmatrix}\cos\theta&-\sin\theta\\ \sin\theta&\cos\theta\end{pmatrix} has determinant 11.