Union

The set of elements that belong to at least one of the given sets
Union

Let AA and BB be . Their union is

AB={x:xA or xB}. A \cup B = \{x : x \in A \text{ or } x \in B\}.

More generally, for an indexed family (Ai)iI(A_i)_{i\in I} of sets, the union is

iIAi={x:iI with xAi}. \bigcup_{i\in I} A_i = \{x : \exists i\in I \text{ with } x \in A_i\}.

Union is dual to and interacts with via monotonicity: if ABA \subseteq B then ACBCA \cup C \subseteq B \cup C.

Examples:

  • {1,2}{2,3}={1,2,3}\{1,2\} \cup \{2,3\} = \{1,2,3\}.
  • (0,1)(1,2)=(0,2){1}(0,1) \cup (1,2) = (0,2)\setminus\{1\}.
  • If Ai={i}A_i = \{i\} for i{1,2,3}i\in\{1,2,3\}, then iAi={1,2,3}\bigcup_{i} A_i = \{1,2,3\}.