Surjective function

A function f:A→B is surjective if every b∈B equals f(a) for some a∈A
Surjective function

Let f ⁣:ABf\colon A\to B be a . Then ff is surjective (or onto) if

bB,  aA such that f(a)=b. \forall b\in B,\;\exists a\in A\text{ such that }f(a)=b.

Surjectivity is the statement that the of the whole equals the : f(A)=Bf(A)=B.

Examples:

  • f ⁣:R[0,)f\colon\mathbb{R}\to[0,\infty) given by f(x)=x2f(x)=x^2 is surjective.
  • The projection π ⁣:R2R\pi\colon\mathbb{R}^2\to\mathbb{R}, π(x,y)=x\pi(x,y)=x, is surjective.
  • The exponential map exp ⁣:RR\exp\colon\mathbb{R}\to\mathbb{R} is not surjective (no negative values occur).