Preimage of a function

The set of inputs mapped into a target subset T⊆B, denoted f^{-1}(T)
Preimage of a function

Let f ⁣:ABf\colon A\to B be a and let TBT\subseteq B be a . The preimage (or inverse image) of TT under ff is

f1(T)={aA:f(a)T}A. f^{-1}(T)=\{a\in A: f(a)\in T\}\subseteq A.

Preimages are defined for arbitrary functions (not only ) and are fundamental in pulling back structure along maps.

Examples:

  • If f(x)=x2f(x)=x^2 on R\mathbb{R} and T=[0,1]T=[0,1], then f1(T)=[1,1]f^{-1}(T)=[-1,1].
  • If f ⁣:ZZf\colon\mathbb{Z}\to\mathbb{Z} is f(n)=2nf(n)=2n and T={0}T=\{0\}, then f1(T)={0}f^{-1}(T)=\{0\}.