Inverse function

For a bijection f:A→B, the unique function f^{-1}:B→A with f^{-1}(f(a))=a
Inverse function

Let f ⁣:ABf\colon A\to B be a . The inverse function of ff is the f1 ⁣:BAf^{-1}\colon B\to A defined by

f1(b)= the unique aA such that f(a)=b. f^{-1}(b)=\text{ the unique }a\in A\text{ such that }f(a)=b.

It is characterized by the identities

f1f=idAandff1=idB, f^{-1}\circ f=\mathrm{id}_A \quad\text{and}\quad f\circ f^{-1}=\mathrm{id}_B,

where \circ is and id\mathrm{id} is the .

Examples:

  • If f ⁣:ZZf\colon\mathbb{Z}\to\mathbb{Z} is f(n)=n+1f(n)=n+1, then f1(m)=m1f^{-1}(m)=m-1.
  • If g ⁣:R(0,)g\colon\mathbb{R}\to(0,\infty) is g(x)=exg(x)=e^x, then g1(y)=lnyg^{-1}(y)=\ln y.