Intersection

The set of elements common to all of the given sets
Intersection

Let AA and BB be . Their intersection is

AB={x:xA and xB}. A \cap B = \{x : x \in A \text{ and } x \in B\}.

More generally, for an indexed family (Ai)iI(A_i)_{i\in I} of sets, the intersection is

iIAi={x:iI,  xAi}. \bigcap_{i\in I} A_i = \{x : \forall i\in I,\; x \in A_i\}.

Intersection is related to by De Morgan-type dualities once a is fixed.

Examples:

  • {1,2}{2,3}={2}\{1,2\} \cap \{2,3\} = \{2\}.
  • [0,2](1,3)=(1,2][0,2] \cap (1,3) = (1,2].
  • If Ai=R{i}A_i = \mathbb{R}\setminus\{i\} for i{1,2}i\in\{1,2\}, then iAi=R{1,2}\bigcap_i A_i = \mathbb{R}\setminus\{1,2\}.