Injective function

A function f is injective if f(a1)=f(a2) implies a1=a2
Injective function

Let f ⁣:ABf\colon A\to B be a . Then ff is injective (or one-to-one) if

a1,a2A,  f(a1)=f(a2)a1=a2. \forall a_1,a_2\in A,\; f(a_1)=f(a_2)\Rightarrow a_1=a_2.

Injectivity means distinct inputs never collide under ff. Equivalently, each element of the has at most one .

Examples:

  • The inclusion map ι ⁣:{1,2}{1,2,3}\iota\colon\{1,2\}\to\{1,2,3\} is injective.
  • The function f ⁣:ZZf\colon\mathbb{Z}\to\mathbb{Z} given by f(n)=2nf(n)=2n is injective.
  • The function g ⁣:RRg\colon\mathbb{R}\to\mathbb{R} given by g(x)=x2g(x)=x^2 is not injective since g(1)=g(1)g(1)=g(-1).