Identity function

The function id_A:A→A defined by id_A(a)=a
Identity function

For a AA, the identity function on AA is the

idA ⁣:AA,idA(a)=a. \mathrm{id}_A\colon A\to A,\qquad \mathrm{id}_A(a)=a.

The identity function is . Identity functions are characterized by their behavior under : for any f ⁣:ABf\colon A\to B, one has idBf=f\mathrm{id}_B\circ f=f and fidA=ff\circ \mathrm{id}_A=f.

Examples:

  • On R\mathbb{R}, idR(x)=x\mathrm{id}_{\mathbb{R}}(x)=x.
  • On a finite set A={1,2,3}A=\{1,2,3\}, idA\mathrm{id}_A fixes each element.