Equivalence relation

A relation that is reflexive, symmetric, and transitive
Equivalence relation

Let AA be a and let \sim be a on AA (so A×A\sim \subseteq A\times A, the ). Then \sim is an equivalence relation if it satisfies:

  • (Reflexive) aA,  aa\forall a\in A,\; a\sim a.
  • (Symmetric) a,bA,  abba\forall a,b\in A,\; a\sim b \Rightarrow b\sim a.
  • (Transitive) a,b,cA,  (ab and bc)ac\forall a,b,c\in A,\; (a\sim b \text{ and } b\sim c)\Rightarrow a\sim c.

Equivalence relations are exactly the relations that partition AA into ; the set of classes is the .

Examples:

  • Equality == on any set AA is an equivalence relation.
  • On Z\mathbb{Z}, define aba\sim b iff aba-b is divisible by nn (congruence modulo nn).
  • On R\mathbb{R}, define xyx\sim y iff xyZx-y\in\mathbb{Z}.