Domain

The input set of a function, or the set of first components appearing in a relation
Domain

If f ⁣:ABf\colon A\to B is a , then the domain of ff is the input set AA.

More generally, if RA×BR\subseteq A\times B is a , its domain is the

dom(R)={aA:bB with (a,b)R}, \mathrm{dom}(R)=\{a\in A:\exists b\in B\text{ with }(a,b)\in R\},

where A×BA\times B is the .

Examples:

  • For f ⁣:RRf\colon\mathbb{R}\to\mathbb{R} defined by f(x)=x2f(x)=x^2, the domain is R\mathbb{R}.
  • If R={(1,a),(2,a)}{1,2,3}×{a,b}R=\{(1,a),(2,a)\}\subseteq\{1,2,3\}\times\{a,b\}, then dom(R)={1,2}\mathrm{dom}(R)=\{1,2\}.