Cartesian product

The set A×B of ordered pairs (a,b) with a∈A and b∈B
Cartesian product

Let AA and BB be . Their Cartesian product is

A×B={(a,b):aA,  bB}, A \times B = \{(a,b) : a \in A,\; b \in B\},

where (a,b)(a,b) denotes an .

Cartesian products provide a uniform language for describing (subsets of A×BA\times B) and (special relations).

Examples:

  • If A={0,1}A=\{0,1\} and B={a,b}B=\{a,b\} then A×B={(0,a),(0,b),(1,a),(1,b)}A\times B=\{(0,a),(0,b),(1,a),(1,b)\}.
  • R×R\mathbb{R}\times\mathbb{R} can be identified with the Euclidean plane R2\mathbb{R}^2.
  • If B=B=\emptyset (see ) then A×B=A\times B=\emptyset.