Continuous function attains max and min on a compact set
Corollary (Extreme Value Theorem): Let (X,d)(X,d)(X,d) be a compact metric space and let f:X→Rf:X\to\mathbb{R}f:X→R be continuous . Then there exist xmin,xmax∈Xx_{\min},x_{\max}\in Xxmin,xmax∈X such that f(xmin)=HAHAHUGOSHORTCODE585s3HBHBx∈Xf(x),f(xmax)=HAHAHUGOSHORTCODE585s4HBHBx∈Xf(x). f(x_{\min})=min _{x\in X} f(x),\qquad f(x_{\max})=max _{x\in X} f(x). f(xmin)=HAHAHUGOSHORTCODE585s3HBHBx∈Xf(x),f(xmax)=HAHAHUGOSHORTCODE585s4HBHBx∈Xf(x). ...