Cauchy Condensation Test
Cauchy Condensation Test: Let (an)(a_n)(an) be a nonincreasing sequence of nonnegative real numbers. Then ∑n=1∞an converges ⟺∑k=0∞2ka2k converges.\sum_{n=1}^\infty a_n \text{ converges } \Longleftrightarrow \sum_{k=0}^\infty 2^k a_{2^k} \text{ converges}.∑n=1∞an converges ⟺∑k=0∞2ka2k converges. ...