Uniqueness of supremum and infimum
Let E⊆RE\subseteq\mathbb{R}E⊆R. A real number sss is the supremum of EEE if: x≤sx\le sx≤s for all x∈Ex\in Ex∈E (so sss is an upper bound ), and for every u∈Ru\in\mathbb{R}u∈R, if x≤ux\le ux≤u for all x∈Ex\in Ex∈E then s≤us\le us≤u (so sss is the least upper bound). Uniqueness of supremum: If sss and ttt are both supE\sup EsupE, then s=ts=ts=t. ...