Uniform convergence implies uniform Cauchy
Uniform convergence implies uniform Cauchy: Let XXX be a set and let (fn)(f_n)(fn) be functions fn:X→(Y,d)f_n:X\to (Y,d)fn:X→(Y,d) into a metric space . If fn→ff_n\to ffn→f uniformly on XXX, then (fn)(f_n)(fn) is uniformly Cauchy : ∀ε>0 ∃N ∀m,n≥N: supx∈Xd(fn(x),fm(x))<ε. \forall\varepsilon>0\;\exists N\;\forall m,n\ge N:\ \sup_{x\in X} d(f_n(x),f_m(x))<\varepsilon. ∀ε>0∃N∀m,n≥N: supx∈Xd(fn(x),fm(x))<ε. ...