Uniform Cauchy sequence of functions
Let XXX be a set and let (Y,dY)(Y,d_Y)(Y,dY) be a metric space. A sequence of functions fn:X→Yf_n:X\to Yfn:X→Y is uniformly Cauchy if ∀ε>0, ∃N∈N such that ∀m,n≥N, ∀x∈X, dY(fm(x),fn(x))<ε.\forall \varepsilon>0,\ \exists N\in\mathbb{N}\ \text{such that}\ \forall m,n\ge N,\ \forall x\in X,\ d_Y\bigl(f_m(x),f_n(x)\bigr)<\varepsilon.∀ε>0, ∃N∈N such that ∀m,n≥N, ∀x∈X, dY(fm(x),fn(x))<ε. Equivalently, ...