Subset

A subset of a set BBB is a set AAA such that every element of AAA is an element of BBB. Formally, A⊆Bmeans∀x (x∈A⇒x∈B).A \subseteq B \quad\text{means}\quad \forall x\,(x\in A \Rightarrow x\in B).A⊆Bmeans∀x(x∈A⇒x∈B).Subset inclusion ⊆\subseteq⊆ is the basic relation for comparing sets. Many constructions in analysis (closures, neighborhoods, function spaces) are naturally expressed as subsets of larger ambient sets. ...

1 min

Substitution rule (change of variables) for Riemann integrals

Substitution rule: Let f:[a,b]→Rf:[a,b]\to\mathbb{R}f:[a,b]→R be continuous , and let φ:[α,β]→[a,b]\varphi:[\alpha,\beta]\to[a,b]φ:[α,β]→[a,b] be continuously differentiable and monotone on [α,β][\alpha,\beta][α,β]. Then ∫αβf(φ(t)) φ′(t) dt=∫φ(α)φ(β)f(u) du. \int_\alpha^\beta f(\varphi(t))\,\varphi'(t)\,dt=\int_{\varphi(\alpha)}^{\varphi(\beta)} f(u)\,du. ∫αβ​f(φ(t))φ′(t)dt=∫φ(α)φ(β)​f(u)du. (If φ\varphiφ is decreasing, the right-hand side automatically changes sign because φ(α)>φ(β)\varphi(\alpha)>\varphi(\beta)φ(α)>φ(β).) ...

1 min

Supremum (least upper bound)

Let (X,≤)(X,\le)(X,≤) be a partially ordered set and let S⊆XS\subseteq XS⊆X. An element s∗∈Xs^\ast\in Xs∗∈X is the supremum of SSS, written s∗=sup⁡Ss^\ast=\sup Ss∗=supS, if: s∗s^\asts∗ is an upper bound of SSS, i.e. ∀s∈S, s≤s∗\forall s\in S,\ s\le s^\ast∀s∈S, s≤s∗, and s∗s^\asts∗ is the least such upper bound: for every upper bound uuu of SSS, one has s∗≤us^\ast\le us∗≤u. Suprema are “best possible” upper bounds and are the key completeness feature of R\mathbb{R}R. In general ordered sets, sup⁡S\sup SsupS need not exist. ...

1 min

Supremum approximation lemma

Supremum approximation lemma: Let E⊆RE\subseteq\mathbb{R}E⊆R be nonempty and bounded above , and let s=sup⁡Es=\sup Es=supE. Then: for every ε>0\varepsilon>0ε>0 there exists x∈Ex\in Ex∈E such that s−ε<x≤s, s-\varepsilon < x \le s, s−ε<x≤s, equivalently, there exists a sequence (xn)(x_n)(xn​) in EEE such that xn→sx_n\to sxn​→s. This lemma is used constantly to turn the abstract existence of sup⁡E\sup EsupE into a usable approximation statement (often in ε\varepsilonε–arguments). ...

1 min

Surjective function

A function f:X→Yf:X\to Yf:X→Y is surjective (or onto) if ∀y∈Y, ∃x∈X such that f(x)=y.\forall y\in Y,\ \exists x\in X\ \text{such that}\ f(x)=y.∀y∈Y, ∃x∈X such that f(x)=y. Equivalently, f(X)=Yf(X)=Yf(X)=Y (the image equals the codomain ). Surjectivity depends on the specified codomain YYY, not just on the rule x↦f(x)x\mapsto f(x)x↦f(x). Many constructions in analysis naturally produce surjections (e.g., quotient maps, parameterizations) and surjectivity is required for an inverse to be defined on all of YYY. ...

1 min

Symmetric difference

The symmetric difference of sets AAA and BBB is A△B:=(A∖B)∪(B∖A).A\triangle B := (A\setminus B)\cup(B\setminus A).A△B:=(A∖B)∪(B∖A). Equivalently, x∈A△Bx\in A\triangle Bx∈A△B iff (x∈A) ⊕ (x∈B)(x\in A)\ \oplus\ (x\in B)(x∈A) ⊕ (x∈B), where ⊕\oplus⊕ denotes exclusive-or. Symmetric difference measures how two sets differ and is useful as an operation on sets (it makes the power set of a fixed universe into an abelian group under △\triangle△). ...

1 min

Tagged partition

A tagged partition of [a,b][a,b][a,b] is a pair (P,T)(P,T)(P,T) where: P:a=x0<⋯<xn=bP:a=x_0<\cdots<x_n=bP:a=x0​<⋯<xn​=b is a partition, and T=(t1,…,tn)T=(t_1,\dots,t_n)T=(t1​,…,tn​) is a choice of tags with ti∈[xi−1,xi]for each i=1,…,n.t_i\in[x_{i-1},x_i]\quad\text{for each }i=1,\dots,n.ti​∈[xi−1​,xi​]for each i=1,…,n. Tagged partitions specify where a function is sampled to form Riemann sums. Different tagging conventions (e.g., left endpoints, right endpoints, midpoints) yield different approximations for finite partitions. ...

1 min

Taylor polynomial

Let fff be a real- (or complex-) valued function defined on an interval containing a∈Ra\in\mathbb{R}a∈R, and assume that f(j)(a)f^{(j)}(a)f(j)(a) exists for 0≤j≤k0\le j\le k0≤j≤k (see higher derivatives ). The Taylor polynomial of degree kkk of fff at aaa is Tkf(x;a):=∑j=0kf(j)(a)j!(x−a)j. T_k f(x;a) := \sum_{j=0}^k \frac{f^{(j)}(a)}{j!}(x-a)^j. Tk​f(x;a):=j=0∑k​j!f(j)(a)​(x−a)j.Taylor polynomials provide the canonical local polynomial approximation to fff near aaa. Taylor’s theorem quantifies the error via a remainder term . ...

1 min

Taylor's Theorem in several variables

Taylor’s Theorem (several variables, one standard form): Let U⊆RnU\subseteq\mathbb{R}^nU⊆Rn be open and let f:U→Rf:U\to\mathbb{R}f:U→R be of class Ck+1C^{k+1}Ck+1 on a neighborhood of a∈Ua\in Ua∈U. Using multi-index notation, there exists a remainder Rk(h)R_k(h)Rk​(h) such that for hhh sufficiently small (with a+h∈Ua+h\in Ua+h∈U), f(a+h)=∑∣α∣≤kDαf(a)α! hα+Rk(h), f(a+h)=\sum_{|\alpha|\le k}\frac{D^\alpha f(a)}{\alpha!}\,h^\alpha + R_k(h), f(a+h)=∑∣α∣≤k​α!Dαf(a)​hα+Rk​(h), and Rk(h)∥h∥k→0as h→0. \frac{R_k(h)}{\|h\|^k}\to 0 \quad \text{as } h\to 0. ∥h∥kRk​(h)​→0as h→0. Here α=(α1,…,αn)\alpha=(\alpha_1,\dots,\alpha_n)α=(α1​,…,αn​), ∣α∣=α1+⋯+αn|\alpha|=\alpha_1+\cdots+\alpha_n∣α∣=α1​+⋯+αn​, α!=α1!⋯αn!\alpha!=\alpha_1!\cdots \alpha_n!α!=α1​!⋯αn​!, and hα=h1α1⋯hnαnh^\alpha=h_1^{\alpha_1}\cdots h_n^{\alpha_n}hα=h1α1​​⋯hnαn​​. ...

1 min

Taylor's Theorem with remainder

Taylor’s Theorem (Lagrange remainder): Let fff be (n+1)(n+1)(n+1) times continuously differentiable on an interval containing aaa and xxx. Then there exists ξ\xiξ between aaa and xxx such that f(x)=∑k=0nf(k)(a)k!(x−a)k+f(n+1)(ξ)(n+1)!(x−a)n+1. f(x)=\sum_{k=0}^{n}\frac{f^{(k)}(a)}{k!}(x-a)^k+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}. f(x)=∑k=0n​k!f(k)(a)​(x−a)k+(n+1)!f(n+1)(ξ)​(x−a)n+1. ...

1 min