Boundary
Let (X,d)(X,d)(X,d) be a metric space and let A⊆XA\subseteq XA⊆X. The boundary of AAA, denoted ∂A\partial A∂A, is ∂A:=A‾∖int(A).\partial A := \overline{A}\setminus \operatorname{int}(A).∂A:=A∖int(A). Equivalently, ∂A=A‾∩X∖A‾\partial A = \overline{A}\cap \overline{X\setminus A}∂A=A∩X∖A (see closure and interior ). Equivalently again, x∈∂Ax\in\partial Ax∈∂A iff every open ball B(x,r)B(x,r)B(x,r) meets both AAA and X∖AX\setminus AX∖A. ...