Let (X,d)(X,d)(X,d) be a metric space, let x∈Xx\in Xx∈X, and let r≥0r\ge 0r≥0. The (metric) sphere of radius rrr centered at xxx is S(x,r):={y∈X:d(x,y)=r}.S(x,r):=\{y\in X : d(x,y)=r\}.S(x,r):={y∈X:d(x,y)=r}.Spheres generalize the usual circles and spheres in Euclidean geometry. They are useful for describing boundaries of balls and for constructing examples in metric topology.
Examples:
In R\mathbb{R}R, S(a,r)={a−r,a+r}S(a,r)=\{a-r,a+r\}S(a,r)={a−r,a+r} if r>0r>0r>0. In R2\mathbb{R}^2R2, S(0,1)={(x,y):x2+y2=1}S(0,1)=\{(x,y):x^2+y^2=1\}S(0,1)={(x,y):x2+y2=1} is the unit circle. In a discrete metric space, S(x,1)=X∖{x}S(x,1)=X\setminus\{x\}S(x,1)=X∖{x}.