Right derivative and left derivative
Let f:E→Rf:E\to\mathbb{R}f:E→R (or C\mathbb{C}C) with E⊆RE\subseteq\mathbb{R}E⊆R, and let a∈Ea\in Ea∈E be a limit point of E∩(a,∞)E\cap(a,\infty)E∩(a,∞) and of E∩(−∞,a)E\cap(-\infty,a)E∩(−∞,a). The right derivative of fff at aaa is f+′(a):=limh↓0f(a+h)−f(a)h,f'_+(a):=\lim_{h\downarrow 0}\frac{f(a+h)-f(a)}{h},f+′(a):=h↓0limhf(a+h)−f(a), provided the limit exists. The left derivative is ...