Let R=∏j=1n[aj,bj]⊆RnR=\prod_{j=1}^n [a_j,b_j]\subseteq \mathbb{R}^nR=∏j=1n[aj,bj]⊆Rn be a rectangle and let f:R→Rf:R\to\mathbb{R}f:R→R be bounded.
A partition PPP of RRR is a finite collection of subrectangles whose union is RRR and whose interiors are pairwise disjoint (typically produced by partitioning each coordinate interval). For each subrectangle Q⊆RQ\subseteq RQ⊆R, let MQ=supx∈Qf(x),mQ=infx∈Qf(x),vol(Q)=∏j=1n(side length in coordinate j).M_Q=\sup_{x\in Q} f(x), \qquad m_Q=\inf_{x\in Q} f(x), \qquad \operatorname{vol}(Q)=\prod_{j=1}^n (\text{side length in coordinate }j).MQ=supx∈Qf(x),mQ=infx∈Qf(x),vol(Q)=∏j=1n(side length in coordinate j). Define the upper sum and lower sum U(f,P)=∑Q∈PMQ vol(Q),L(f,P)=∑Q∈PmQ vol(Q).U(f,P)=\sum_{Q\in P} M_Q\,\operatorname{vol}(Q), \qquad L(f,P)=\sum_{Q\in P} m_Q\,\operatorname{vol}(Q).U(f,P)=∑Q∈PMQvol(Q),L(f,P)=∑Q∈PmQvol(Q).
...