Limit of a function at infinity
Let f:E→Rf:E\to\mathbb{R}f:E→R (or C\mathbb{C}C) where E⊆RE\subseteq\mathbb{R}E⊆R is unbounded above. We say limx→∞f(x)=L\lim_{x\to\infty} f(x)=Lx→∞limf(x)=L if ∀ε>0, ∃M∈R such that ∀x∈E, (x>M⇒∣f(x)−L∣<ε).\forall \varepsilon>0,\ \exists M\in\mathbb{R}\ \text{such that}\ \forall x\in E,\ \bigl(x>M \Rightarrow |f(x)-L|<\varepsilon\bigr).∀ε>0, ∃M∈R such that ∀x∈E, (x>M⇒∣f(x)−L∣<ε).Limits at infinity formalize the long-range behavior of functions and are used in asymptotics, improper integrals, and series tests. ...