Algebraic properties of sup and inf
Let E,F⊆RE,F\subseteq\mathbb{R}E,F⊆R be nonempty and bounded above/below where needed, and let c∈Rc\in\mathbb{R}c∈R. Order properties: If E⊆FE\subseteq FE⊆F and both are bounded above, then HAHAHUGOSHORTCODE515s1HBHBE≤supFsup E\le \sup FHAHAHUGOSHORTCODE515s1HBHBE≤supF. If E⊆FE\subseteq FE⊆F and both are bounded below, then HAHAHUGOSHORTCODE515s2HBHBE≥infFinf E\ge \inf FHAHAHUGOSHORTCODE515s2HBHBE≥infF. Translation: ...