L'Hôpital's Rule

L’Hôpital’s Rule (0/0 form, one-sided): Let a<ba<ba<b, and let f,g:[a,b)→Rf,g:[a,b)\to\mathbb{R}f,g:[a,b)→R be continuous on [a,b)[a,b)[a,b) and differentiable on (a,b)(a,b)(a,b). Assume: f(a)=g(a)=0f(a)=g(a)=0f(a)=g(a)=0, g′(x)≠0g'(x)\neq 0g′(x)=0 for all x∈(a,b)x\in(a,b)x∈(a,b), the limit L=lim⁡x→a+f′(x)g′(x)L=\lim_{x\to a^+}\frac{f'(x)}{g'(x)}L=limx→a+​g′(x)f′(x)​ exists in R∪{±∞}\mathbb{R}\cup\{\pm\infty\}R∪{±∞}. Then the limit lim⁡x→a+f(x)g(x)\lim_{x\to a^+}\frac{f(x)}{g(x)}limx→a+​g(x)f(x)​ exists and equals LLL: lim⁡x→a+f(x)g(x)=lim⁡x→a+f′(x)g′(x)=L. \lim_{x\to a^+}\frac{f(x)}{g(x)}=\lim_{x\to a^+}\frac{f'(x)}{g'(x)}=L. limx→a+​g(x)f(x)​=limx→a+​g′(x)f′(x)​=L. ...

1 min

Lagrange multiplier condition

Let f:U⊆Rn→Rf:U\subseteq \mathbb{R}^n\to\mathbb{R}f:U⊆Rn→R and g:U→Rmg:U\to\mathbb{R}^mg:U→Rm be differentiable, and consider maximizing/minimizing f(x)f(x)f(x) subject to the constraint g(x)=0g(x)=0g(x)=0. A point x∗∈Ux^\ast\in Ux∗∈U satisfies the Lagrange multiplier condition if g(x∗)=0g(x^\ast)=0g(x∗)=0, and there exists λ∈Rm\lambda\in\mathbb{R}^mλ∈Rm such that ∇f(x∗)=Dg(x∗)Tλ.\nabla f(x^\ast)=Dg(x^\ast)^{\mathsf T}\lambda.∇f(x∗)=Dg(x∗)Tλ. Geometrically, this says the gradient of fff at an extremum is orthogonal to the tangent space of the constraint set (when that tangent space is well-defined). Under regularity hypotheses (e.g., Dg(x∗)Dg(x^\ast)Dg(x∗) has rank mmm), this condition is necessary for constrained extrema. ...

1 min

Lagrange multipliers theorem

Lagrange multipliers theorem: Let U⊆RnU\subseteq\mathbb{R}^nU⊆Rn be open, let f:U→Rf:U\to\mathbb{R}f:U→R and g:U→Rmg:U\to\mathbb{R}^mg:U→Rm be C1C^1C1, and define the constraint set C={x∈U:g(x)=0}. C=\{x\in U: g(x)=0\}. C={x∈U:g(x)=0}. Suppose x∗∈Cx^\ast\in Cx∗∈C is a local maximizer or minimizer of fff restricted to CCC, and assume the constraint is regular at x∗x^\astx∗: rank⁡Dg(x∗)=m. \operatorname{rank} Dg(x^\ast)=m. rankDg(x∗)=m. Then there exists λ∈Rm\lambda\in\mathbb{R}^mλ∈Rm such that ∇f(x∗)=Dg(x∗)Tλ. \nabla f(x^\ast)=Dg(x^\ast)^{\mathsf T}\lambda. ∇f(x∗)=Dg(x∗)Tλ. ...

1 min

Least Upper Bound Theorem

Least Upper Bound Theorem: If E⊆RE\subseteq \mathbb{R}E⊆R is nonempty and bounded above , then sup⁡E\sup EsupE exists in R\mathbb{R}R. This theorem is the working form of completeness : it guarantees the existence of optimal bounds and is used to prove convergence of monotone sequences , the existence of limits, and many properties of continuous functions. Proof sketch (optional): This is typically taken as an axiom (completeness) or proved from an equivalent completeness formulation (e.g., Cauchy completeness or nested intervals). The main idea is that the “gap-free” nature of R\mathbb{R}R forces a least upper bound to exist. ...

1 min

Lebesgue criterion for Riemann integrability

Lebesgue criterion for Riemann integrability: Let f:[a,b]→Rf:[a,b]\to\mathbb{R}f:[a,b]→R be bounded , and let D⊆[a,b]D\subseteq[a,b]D⊆[a,b] be the set of points where fff is discontinuous. Then fff is Riemann integrable on [a,b][a,b][a,b] if and only if DDD has measure zero ; i.e., for every ε>0\varepsilon>0ε>0 there exists a countable collection of open intervals {Ij}\{I_j\}{Ij​} such that D⊆⋃j=1∞Ijand∑j=1∞∣Ij∣<ε. D\subseteq \bigcup_{j=1}^\infty I_j \quad\text{and}\quad \sum_{j=1}^\infty |I_j|<\varepsilon. D⊆⋃j=1∞​Ij​and∑j=1∞​∣Ij​∣<ε. ...

1 min

Lebesgue Number Lemma

Lebesgue Number Lemma: Let (X,d)(X,d)(X,d) be a compact metric space and let U\mathcal{U}U be an open cover of XXX. Then there exists δ>0\delta>0δ>0 (a Lebesgue number for U\mathcal{U}U) such that for every x∈Xx\in Xx∈X, B(x,δ)⊆Ufor some U∈U.B(x,\delta)\subseteq U \quad \text{for some } U\in\mathcal{U}.B(x,δ)⊆Ufor some U∈U. This lemma is used to pass from pointwise local control to uniform control on compact sets (e.g., in proofs of uniform continuity and partitions of unity in more advanced settings). ...

1 min

Lebesgue number lemma refinement lemma

Refinement lemma (used for Lebesgue numbers): Let (X,d)(X,d)(X,d) be a metric space , let K⊆XK\subseteq XK⊆X be compact , and let U\mathcal{U}U be an open cover of KKK. For each x∈Kx\in Kx∈K, choose Ux∈UU_x\in\mathcal{U}Ux​∈U with x∈Uxx\in U_xx∈Ux​. Since UxU_xUx​ is open, there exists rx>0r_x>0rx​>0 such that B(x,rx)⊆Ux. B(x,r_x)\subseteq U_x. B(x,rx​)⊆Ux​. Then there exist points x1,…,xN∈Kx_1,\dots,x_N\in Kx1​,…,xN​∈K such that K⊆⋃i=1NB ⁣(xi,rxi2). K\subseteq \bigcup_{i=1}^N B\!\left(x_i,\frac{r_{x_i}}{2}\right). K⊆⋃i=1N​B(xi​,2rxi​​​). In particular, if δ=min⁡1≤i≤Nrxi2\delta=\min_{1\le i\le N} \frac{r_{x_i}}{2}δ=min1≤i≤N​2rxi​​​, then δ>0\delta>0δ>0 and for every x∈Kx\in Kx∈K there exists U∈UU\in\mathcal{U}U∈U with B(x,δ)⊆UB(x,\delta)\subseteq UB(x,δ)⊆U. ...

1 min

Limit Comparison Test

Limit Comparison Test: Let an>0a_n>0an​>0 and bn>0b_n>0bn​>0. If lim⁡n→∞anbn=L\lim_{n\to\infty}\frac{a_n}{b_n}=Llimn→∞​bn​an​​=L with 0<L<∞0<L<\infty0<L<∞, then ∑an\sum a_n∑an​ converges if and only if ∑bn\sum b_n∑bn​ converges. ...

1 min

Limit inferior (lim inf)

Let (an)(a_n)(an​) be a sequence in the extended real line [−∞,∞][-\infty,\infty][−∞,∞]. Define the tail infima in:=inf⁡{ak:k≥n}∈[−∞,∞].i_n := \inf\{a_k : k\ge n\}\in[-\infty,\infty].in​:=inf{ak​:k≥n}∈[−∞,∞]. Then the limit inferior of (an)(a_n)(an​) is lim inf⁡n→∞an:=lim⁡n→∞in,\liminf_{n\to\infty} a_n := \lim_{n\to\infty} i_n,n→∞liminf​an​:=n→∞lim​in​, where the limit exists in [−∞,∞][-\infty,\infty][−∞,∞] because (in)(i_n)(in​) is nondecreasing. ...

1 min

Limit of a function at a point

Let (X,dX)(X,d_X)(X,dX​) and (Y,dY)(Y,d_Y)(Y,dY​) be metric spaces , let E⊆XE\subseteq XE⊆X, let x0∈Xx_0\in Xx0​∈X be a limit point of EEE (meaning every neighborhood of x0x_0x0​ meets E∖{x0}E\setminus\{x_0\}E∖{x0​}), and let f:E→Yf:E\to Yf:E→Y. We say that f(x)f(x)f(x) tends to L∈YL\in YL∈Y as x→x0x\to x_0x→x0​, written ...

1 min