L'Hôpital's Rule
L’Hôpital’s Rule (0/0 form, one-sided): Let a<ba<ba<b, and let f,g:[a,b)→Rf,g:[a,b)\to\mathbb{R}f,g:[a,b)→R be continuous on [a,b)[a,b)[a,b) and differentiable on (a,b)(a,b)(a,b). Assume: f(a)=g(a)=0f(a)=g(a)=0f(a)=g(a)=0, g′(x)≠0g'(x)\neq 0g′(x)=0 for all x∈(a,b)x\in(a,b)x∈(a,b), the limit L=limx→a+f′(x)g′(x)L=\lim_{x\to a^+}\frac{f'(x)}{g'(x)}L=limx→a+g′(x)f′(x) exists in R∪{±∞}\mathbb{R}\cup\{\pm\infty\}R∪{±∞}. Then the limit limx→a+f(x)g(x)\lim_{x\to a^+}\frac{f(x)}{g(x)}limx→a+g(x)f(x) exists and equals LLL: limx→a+f(x)g(x)=limx→a+f′(x)g′(x)=L. \lim_{x\to a^+}\frac{f(x)}{g(x)}=\lim_{x\to a^+}\frac{f'(x)}{g'(x)}=L. limx→a+g(x)f(x)=limx→a+g′(x)f′(x)=L. ...