Inner product on ℝ^k
For x=(x1,…,xk)x=(x_1,\dots,x_k)x=(x1,…,xk) and y=(y1,…,yk)y=(y_1,\dots,y_k)y=(y1,…,yk) in Rk\mathbb{R}^kRk, the (standard) inner product is ⟨x,y⟩:=∑i=1kxiyi.\langle x,y\rangle := \sum_{i=1}^k x_i y_i.⟨x,y⟩:=i=1∑kxiyi.The inner product is bilinear, symmetric, and positive definite, and it generates the Euclidean norm by ∥x∥2=⟨x,x⟩\|x\|_2=\sqrt{\langle x,x\rangle}∥x∥2=⟨x,x⟩. It is the algebraic structure behind orthogonality, projections, and many inequalities. ...