Fubini's Theorem (Riemann, continuous case)
Fubini’s Theorem (Riemann, continuous case): Let f:[a,b]×[c,d]→Rf:[a,b]\times[c,d]\to\mathbb{R}f:[a,b]×[c,d]→R be continuous . Define g(x)=∫cdf(x,y) dy(x∈[a,b]),h(y)=∫abf(x,y) dx(y∈[c,d]). g(x)=\int_c^d f(x,y)\,dy \quad (x\in[a,b]), \qquad h(y)=\int_a^b f(x,y)\,dx \quad (y\in[c,d]). g(x)=∫cdf(x,y)dy(x∈[a,b]),h(y)=∫abf(x,y)dx(y∈[c,d]). Then ggg and hhh are continuous, and the double integral exists and satisfies $ \int_a^b\left(\int_c^d f(x,y),dy\right)dx \int_{[a,b]\times[c,d]} f(x,y),d(x,y) \int_c^d\left(\int_a^b f(x,y),dx\right)dy. $ ...