Differentiability at a point (one-variable)
Let f:E→Rf:E\to\mathbb{R}f:E→R (or C\mathbb{C}C) where E⊆RE\subseteq\mathbb{R}E⊆R, and let a∈Ea\in Ea∈E be a limit point of EEE. The function fff is differentiable at aaa if the limit limx→af(x)−f(a)x−a\lim_{x\to a}\frac{f(x)-f(a)}{x-a}x→alimx−af(x)−f(a) exists (in R\mathbb{R}R or C\mathbb{C}C). This limit (the difference quotient ), when it exists, is the derivative f′(a)f'(a)f′(a). ...