Convergence in product metric spaces
Let (X,dX)(X,d_X)(X,dX) and (Y,dY)(Y,d_Y)(Y,dY) be metric spaces . On the product X×YX\times YX×Y, define the metric d∞((x,y),(x′,y′))=max{dX(x,x′), dY(y,y′)}. d_\infty\bigl((x,y),(x',y')\bigr)=\max\{d_X(x,x'),\,d_Y(y,y')\}. d∞((x,y),(x′,y′))=max{dX(x,x′),dY(y,y′)}. (Any equivalent product metric, such as d1=dX+dYd_1=d_X+d_Yd1=dX+dY, yields the same notion of convergence .) ...