Weighted arithmetic–geometric mean inequality

For a,b≥0 and θ∈(0,1): a^θ b^(1−θ) ≤ θa+(1−θ)b
Weighted arithmetic–geometric mean inequality

Proposition (Weighted AM–GM). For all a,b0a,b\ge 0 and all θ(0,1)\theta\in(0,1),

aθb1θθa+(1θ)b. a^\theta b^{1-\theta}\le \theta a+(1-\theta)b.

Context. This inequality can be derived from convexity of the function xlnxx\mapsto -\ln x on (0,)(0,\infty) and is used to prove Hölder-type inequalities.

Proof sketch. Assume a,b>0a,b>0. Convexity of ln-\ln implies

ln(θa+(1θ)b)θln(a)(1θ)ln(b). -\ln(\theta a+(1-\theta)b)\le -\theta\ln(a)-(1-\theta)\ln(b).

Exponentiating yields θa+(1θ)baθb1θ\theta a+(1-\theta)b\ge a^\theta b^{1-\theta}. The cases a=0a=0 or b=0b=0 follow by continuity or direct inspection.

Example. With θ=12\theta=\tfrac12, this becomes aba+b2\sqrt{ab}\le \tfrac{a+b}{2}.