Sums and scalar multiples of convex sets are convex

Minkowski sums and dilations preserve convexity
Sums and scalar multiples of convex sets are convex

Proposition. Let Ω1,Ω2\Omega_1,\Omega_2 be subsets of a real vector space XX and let λR\lambda\in\mathbb{R}. Define the

Ω1+Ω2:={x1+x2:x1Ω1, x2Ω2},λΩ1:={λx:xΩ1}. \Omega_1+\Omega_2:=\{x_1+x_2:x_1\in\Omega_1,\ x_2\in\Omega_2\},\qquad \lambda\Omega_1:=\{\lambda x:x\in\Omega_1\}.

Then Ω1+Ω2\Omega_1+\Omega_2 and λΩ1\lambda\Omega_1 are convex.

Context. This is a key stability property: adding convex “uncertainty sets” or scaling constraints preserves convexity.

Proof sketch. For sums, take ui=xi+yiΩ1+Ω2u_i=x_i+y_i\in\Omega_1+\Omega_2 and use convexity of each set to show λu1+(1λ)u2\lambda u_1+(1-\lambda)u_2 decomposes as a sum of two points in Ω1\Omega_1 and Ω2\Omega_2. For scalar multiples, note λ(θx+(1θ)y)=θ(λx)+(1θ)(λy)\lambda(\theta x+(1-\theta)y)=\theta(\lambda x)+(1-\theta)(\lambda y).