Span

The smallest linear subspace containing a given set
Span

Let XX be a vector space and let AXA\subset X.

The linear subspace generated by AA, also called the span of AA, is defined as

span(A):={YXY is a linear subspace of X and AY}. \operatorname{span}(A):=\bigcap\{\,Y\subset X \mid Y \text{ is a linear subspace of }X\text{ and }A\subset Y\,\}.

Equivalently, it is the intersection of all containing AA, hence the smallest subspace that contains AA.

A central theorem (see ) identifies span(A)\operatorname{span}(A) with all finite of elements of AA.

Examples:

  • In R2\mathbb{R}^2, span{(1,0)}\operatorname{span}\{(1,0)\} is the xx-axis.
  • In R3\mathbb{R}^3, span{(1,0,0),(0,1,0)}\operatorname{span}\{(1,0,0),(0,1,0)\} is the xyxy-plane.
  • If A=A=\emptyset, then span(A)={0}\operatorname{span}(A)=\{0\} (intersection of all subspaces).