Separating a Point from a Convex Set via the Core

If x0 is outside core(Ω) and core(Ω)≠∅, then Ω and {x0} are separable by a hyperplane.
Separating a Point from a Convex Set via the Core

Let XX be a real , let x0Xx_0\in X, and let ΩX\Omega\subset X be . Assume that is nonempty and x0core(Ω)x_0\notin \operatorname{core}(\Omega).

Theorem: The sets Ω\Omega and {x0}\{x_0\} can be . Equivalently, there exists a nonzero linear functional f:XRf:X\to\mathbb{R} such that

f(x)f(x0)for all xΩ. f(x)\le f(x_0)\quad\text{for all }x\in\Omega.

Context: This is a geometric form of . The proof uses the of Ω\Omega (after translation) to build a sublinear domination bound and then applies Hahn–Banach.