Separation by a Hyperplane

Two sets are separable if a nonzero linear functional orders them.
Separation by a Hyperplane

Let XX be a real and let Ω1,Ω2X\Omega_1,\Omega_2\subset X be nonempty.

We say that Ω1\Omega_1 and Ω2\Omega_2 can be separated by a hyperplane if there exists a nonzero linear functional f:XRf:X\to\mathbb{R} such that

f(x)f(y)whenever xΩ1, yΩ2. f(x)\le f(y)\quad\text{whenever }x\in\Omega_1,\ y\in\Omega_2.

Geometrically, picking any α\alpha with supΩ1fαinfΩ2f\sup_{\Omega_1}f\le \alpha\le \inf_{\Omega_2}f produces the {xf(x)=α}\{x\mid f(x)=\alpha\} lying between the two sets; see .