Quasiconvexity via convex sublevel sets

f is quasiconvex iff all sublevel sets {x: f(x)≤α} are convex
Quasiconvexity via convex sublevel sets

Proposition. Let XX be a vector space. A function f:XRf:X\to\mathbb{R} is if and only if for every αR\alpha\in\mathbb{R} the sublevel set

Lα:={xX:f(x)α} L_\alpha:=\{x\in X: f(x)\le \alpha\}

is a .

Context. This is the defining geometric feature of quasiconvexity: convexity is demanded of level sets rather than of the epigraph.

Proof sketch. (⇒) If x,yLαx,y\in L_\alpha, then max{f(x),f(y)}α\max\{f(x),f(y)\}\le \alpha, hence f(λx+(1λ)y)αf(\lambda x+(1-\lambda)y)\le \alpha, so the combination lies in LαL_\alpha. (⇐) Fix x,yx,y and let α=max{f(x),f(y)}\alpha=\max\{f(x),f(y)\}. Then x,yLαx,y\in L_\alpha, so convexity of LαL_\alpha gives λx+(1λ)yLα\lambda x+(1-\lambda)y\in L_\alpha, i.e., f(λx+(1λ)y)αf(\lambda x+(1-\lambda)y)\le \alpha.