Open balls are open

In any metric space, every open ball is an open set
Open balls are open

Proposition. In any , every open ball B(x0;r)B(x_0;r) is an .

Proof sketch. Fix aB(x0;r)a\in B(x_0;r). Let δ:=rd(a,x0)>0\delta:=r-d(a,x_0)>0. If d(x,a)<δd(x,a)<\delta, then by the triangle inequality

d(x,x0)d(x,a)+d(a,x0)<δ+d(a,x0)=r, d(x,x_0)\le d(x,a)+d(a,x_0)<\delta+d(a,x_0)=r,

so xB(x0;r)x\in B(x_0;r). Hence B(a;δ)B(x0;r)B(a;\delta)\subset B(x_0;r), which is exactly openness.