Norm and normed vector space

A norm assigns lengths to vectors and induces a metric
Norm and normed vector space

Let XX be a over R\mathbb{R} (or C\mathbb{C}). A norm on XX is a function :X[0,)\|\cdot\|:X\to[0,\infty) such that for all x,yXx,y\in X and scalars α\alpha:

  1. Positive definiteness: x=0\|x\|=0 iff x=0x=0.
  2. Absolute homogeneity: αx=αx\|\alpha x\|=|\alpha|\,\|x\|.
  3. Triangle inequality: x+yx+y\|x+y\|\le \|x\|+\|y\|.

A pair (X,)(X,\|\cdot\|) is called a normed vector space.

Context. Norms provide a quantitative notion of size. Via , normed spaces are a fundamental class of metric spaces used to define convergence, continuity, and completeness.

Examples:

  • On Rn\mathbb{R}^n, x2=(i=1nxi2)1/2\|x\|_2=\big(\sum_{i=1}^n x_i^2\big)^{1/2} is a norm (Euclidean norm).
  • On Rn\mathbb{R}^n, x1=i=1nxi\|x\|_1=\sum_{i=1}^n |x_i| and x=maxixi\|x\|_\infty=\max_i |x_i| are norms.
  • On the space C([0,1])C([0,1]) of continuous functions, f=maxt[0,1]f(t)\|f\|_\infty=\max_{t\in[0,1]}|f(t)| defines a norm.