A nonnegative real below every epsilon is zero

If ℓ≥0 and ℓ<ε for all ε>0, then ℓ=0
A nonnegative real below every epsilon is zero

Lemma. Let 0\ell\ge 0 be a real number. If

<εfor every ε>0, \ell<\varepsilon \quad\text{for every }\varepsilon>0,

then =0\ell=0.

Proof. If >0\ell>0, choose ε:=/2>0\varepsilon:=\ell/2>0. Then ε<\varepsilon<\ell, contradicting the assumption that <ε\ell<\varepsilon for every ε>0\varepsilon>0. Hence =0\ell=0.

This lemma is commonly used to conclude equality from estimates that hold for all ε>0\varepsilon>0, e.g. in .