Nonnegative (positive-semidefinite) operator

A self-adjoint operator A is nonnegative if ⟨Ax,x⟩≥0 for all x
Nonnegative (positive-semidefinite) operator

Let HH be an inner product space and let A:HHA:H\to H be a linear operator.

The operator AA is nonnegative (or positive-semidefinite) if

Ax,x0for all xH. \langle Ax,x\rangle\ge 0\quad \text{for all }x\in H.

Context. Nonnegative operators correspond to convex quadratic forms. In finite dimensions, this matches the usual matrix notion of positive semidefiniteness.

Example. If A=BBA=B^\ast B for some linear operator BB, then Ax,x=Bx,Bx0\langle Ax,x\rangle=\langle Bx,Bx\rangle\ge 0, so AA is nonnegative.