Minkowski Function (Gauge)

A set-generated sublinear functional pΩ(x)=inf{t≥0 : x∈tΩ}.
Minkowski Function (Gauge)

Let XX be a and let ΩX\Omega\subset X be nonempty.

The Minkowski function (or Minkowski gauge) of Ω\Omega is the function pΩ:X[0,]p_\Omega:X\to[0,\infty] defined by

pΩ(x):=inf{t0xtΩ},xX, p_\Omega(x):=\inf\{t\ge 0 \mid x\in t\Omega\}, \qquad x\in X,

with the convention inf()=\inf(\emptyset)=\infty.

When Ω\Omega is and , the gauge is real-valued and ; its strict and non-strict sublevel sets recover via .

Examples:

  • If Ω\Omega is the closed unit ball of a , then pΩ(x)=xp_\Omega(x)=\|x\|.
  • If Ω\Omega is a cone (e.g., R+n\mathbb{R}^n_+), then pΩp_\Omega can take the value \infty outside the cone unless Ω\Omega is absorbing.