Marginal (Optimal Value) Function

The infimum of an objective over a set-valued constraint mapping
Marginal (Optimal Value) Function

Given a F:XYF:X\rightrightarrows Y and a function φ:X×YR\varphi:X\times Y\to\overline{\mathbb{R}}, the optimal value (marginal) function μ:XR\mu:X\to\overline{\mathbb{R}} is defined by

μ(x):=inf{φ(x,y)yF(x)},xX. \mu(x):=\inf\{\varphi(x,y)\mid y\in F(x)\}, \qquad x\in X.

We use the convention inf():=\inf(\emptyset):=\infty, and in the notes it is assumed that μ(x)>\mu(x)>-\infty for all xXx\in X.

The marginal function captures “minimize over yy given xx” and is central in parametric optimization and convex analysis; its convexity is addressed in .

Examples:

  • If F(x)CF(x)\equiv C is a fixed nonempty set and φ(x,y)=g(x,y)\varphi(x,y)=g(x,y), then μ(x)=infyCg(x,y)\mu(x)=\inf_{y\in C} g(x,y).
  • If F(x)F(x) is the feasible set of a constraint system depending on xx, then μ(x)\mu(x) is the optimal value of that parameterized problem.