Linear operator

A map between vector spaces preserving addition and scalar multiplication
Linear operator

Let XX and YY be vector spaces over the same field KK.

A function T:XYT:X\to Y is a linear operator (or linear transformation) if:

  1. T(x+u)=T(x)+T(u)T(x+u)=T(x)+T(u) for all x,uXx,u\in X,
  2. T(αx)=αT(x)T(\alpha x)=\alpha T(x) for all αK\alpha\in K and xXx\in X.

Equivalently, TT is linear if and only if

T(αx+βu)=αT(x)+βT(u)for all α,βK, x,uX. T(\alpha x+\beta u)=\alpha T(x)+\beta T(u)\quad\text{for all }\alpha,\beta\in K,\ x,u\in X.

One often writes TxTx instead of T(x)T(x).

Linear operators are the morphisms of . Their give canonical subspaces, and the associated quotient describes the operator up to isomorphism.

Examples:

  • Matrix multiplication T(x)=AxT(x)=Ax on KnK^n.
  • The derivative D:C1[a,b]C[a,b]D:C^1[a,b]\to C[a,b], Df=fDf=f' (linear over R\mathbb{R}).
  • The evaluation map evx0:F(Ω)K\mathrm{ev}_{x_0}:F(\Omega)\to K, evx0(f)=f(x0)\mathrm{ev}_{x_0}(f)=f(x_0).