Line segments in a vector space

Segments are sets of convex combinations of two points
Line segments in a vector space

Let XX be a and let a,bXa,b\in X.

  • The closed line segment joining aa and bb is [a,b]:={λa+(1λ)b:λ[0,1]}. [a,b]:=\{\lambda a+(1-\lambda)b:\lambda\in[0,1]\}.
  • The open segment is (a,b):={λa+(1λ)b:λ(0,1)}. (a,b):=\{\lambda a+(1-\lambda)b:\lambda\in(0,1)\}.
  • The half-open segments are [a,b):={λa+(1λ)b:λ(0,1]}[a,b):=\{\lambda a+(1-\lambda)b:\lambda\in(0,1]\} and (a,b]:={λa+(1λ)b:λ[0,1)}(a,b]:=\{\lambda a+(1-\lambda)b:\lambda\in[0,1)\}.

Context. A set is exactly when it contains [a,b][a,b] for every a,ba,b in the set.

Examples:

  • In X=RX=\mathbb{R}, [a,b][a,b] is the usual interval between aa and bb.
  • In X=R2X=\mathbb{R}^2, [a,b][a,b] is the straight segment in the plane from aa to bb.