Indicator function of a set

The extended-real function that is 0 on Ω and ∞ outside Ω
Indicator function of a set

Let XX be a vector space and let ΩX\Omega\subset X be nonempty. The indicator function of Ω\Omega is the function δΩ:XR\delta_\Omega:X\to\mathbb{R} defined by

δΩ(x)={0,xΩ,,xΩ. \delta_\Omega(x)= \begin{cases} 0, & x\in\Omega,\\ \infty, & x\notin\Omega. \end{cases}

Its is dom(δΩ)=Ω\mathrm{dom}(\delta_\Omega)=\Omega, and its epigraph is epi(δΩ)=Ω×[0,)\mathrm{epi}(\delta_\Omega)=\Omega\times[0,\infty).

Context. Indicator functions encode constraints as penalties: minimizing f+δΩf+\delta_\Omega is equivalent to minimizing ff subject to xΩx\in\Omega.

Convexity. δΩ\delta_\Omega is if and only if Ω\Omega is a .

Examples:

  • If Ω\Omega is a subspace, then δΩ\delta_\Omega is convex.
  • If Ω\Omega is a nonconvex set (e.g., two disjoint balls), then δΩ\delta_\Omega is not convex.