Images and preimages of subspaces under linear maps

Linear maps send subspaces to subspaces and pull back subspaces to subspaces
Images and preimages of subspaces under linear maps

Proposition. Let T:XYT:X\to Y be a linear operator between vector spaces.

  1. If MXM\subset X is a , then T(M)YT(M)\subset Y is a linear subspace.
  2. If NYN\subset Y is a linear subspace, then the preimage T1(N):={xXT(x)N} T^{-1}(N):=\{x\in X\mid T(x)\in N\} is a linear subspace of XX.

In particular, kerT\ker T and imT\operatorname{im}T from are subspaces.

Proof sketch. For (1), use T(m1+m2)=T(m1)+T(m2)T(m_1+m_2)=T(m_1)+T(m_2) and T(λm)=λT(m)T(\lambda m)=\lambda T(m) and closure of MM. For (2), if x1,x2T1(N)x_1,x_2\in T^{-1}(N) then T(x1+x2)NT(x_1+x_2)\in N by closure of NN; similarly for scalars.