Image, kernel, and linear isomorphism

The image and kernel of a linear operator; bijective linear maps are isomorphisms
Image, kernel, and linear isomorphism

Let T:XYT:X\to Y be a between vector spaces.

  • The image of TT is imT:=T(X)={T(x)xX}Y. \operatorname{im}T:=T(X)=\{T(x)\mid x\in X\}\subset Y.
  • The kernel of TT is kerT:=T1({0})={xXT(x)=0}X. \ker T:=T^{-1}(\{0\})=\{x\in X\mid T(x)=0\}\subset X.

If TT is bijective (one-to-one and onto), then TT is a linear isomorphism, and we say that XX and YY are isomorphic, written XYX\cong Y.

Both kerT\ker T and imT\operatorname{im}T are (see ). The quotient X/kerTX/\ker T is canonically isomorphic to imT\operatorname{im}T (see ).

Examples:

  • If T:R2RT:\mathbb{R}^2\to\mathbb{R} is T(x,y)=x+yT(x,y)=x+y, then kerT={(t,t):tR}\ker T=\{(t,-t):t\in\mathbb{R}\} and imT=R\operatorname{im}T=\mathbb{R}.
  • If T=idXT=\mathrm{id}_X, then kerT={0}\ker T=\{0\} and imT=X\operatorname{im}T=X; TT is an isomorphism.